Semester : SEMESTER 4
Year : 2017
Term : JULY
Branch : SAFETY & FIRE ENGINEERING
Scheme : 2015 Full Time
Course Code : MA202
Page:2
ما
a)
b)
a)
b)
a)
b)
0)
a)
b)
0)
a)
b)
0)
B4A0002
Find the Fourier cosine transform of
f(x) = x2, ifO
0, ifx>1
Find the Laplace transform of
(i) sinhtcost (ii) (t -1)°
Find the inverse Laplace transform of അത്തു
(s + v2)(s— v3)
Solve the initial value problem, using Laplace transforms.
y’+y’ + 9y =0, y(0) = 0.16, y’(0) =0
PART C (MODULES V AND VI)
Answer two full questions.
Using Newton Raphson Method Compute the square root of 51 correct to 4 decimal
places
For the following data calculate the value of y when x = 9
x: 8 10 12 14 16 18
y: 10 19 32.5 54 89.5 154
Given f(2) = 5, (2.5) =6, find the linear interpolating polynomial using Lagrange’s
formula and also find (2.2)
Determine the interpolating polynomial for the following data
x: -l 0 1 3
ys 2 1 0 -1 Hence find the value of y when x = 2
Solve the following by Guass — Seidel Method
67९ + 157 + 27 ८ 72
x +y+54z=110
27x + 6by—z=85
Evaluate [ _¢x_ , using Simpsons rule by taking step size h=1
0 1427
Using Euler Method, Solve y =x+ y, y(0)=1 for x =0.2
Find y(0.1) by improved Euler method given y = -xy’, y(0) = 2
Apply Runge — Kutta fourth order method to find an approximate value of y when
x= 0.1 given that. =x+yandy=1
when x 0
Ti KR
Page 2 of 2
(7)
(8)
(7)
(8)
(7)
(7)
(6)
(6)
(8)
(6)
(6)
(6)
(8)