Semester : SEMESTER 3
Subject : Linear Algebra & Complex Analysis
Year : 2017
Term : December
Branch : MECHANICAL ENGINEERING
Scheme : 2015 Full Time
Course Code : MA 201
Page:2
0)
೩)
0)
0)
೩)
0)
0)
೩)
0)
0)
5102
Evaluate |
26
A7046
dz over the circle |z|=2 using Cauchy’s Residue theorem.
PART C
Answer any two full questions, each carries 20 marks.
Solve by Gauss-Elimination method x + y + 2 = 6, ++ 2y- 32 = -4, -x-4y+9z =18.
Find the values of ‘a’ and ‘b’ for which the system of equations x + y + 2z 52,
2x-y+3z=10,5x-y+az=b has:
(i) no solution (ii) unique solution (iii) infinite number of solutions.
Verify whether the vectors (1,2,1,2), (3,1,-2,1),(4,-3,-1,3) and (2,4,2,4) are linearly
independent in R*.
Write down the matrix associated with the quadratic form 8x 17+7x27+3x37-12x1x2
-8x2x3+4x3x1. By finding eigen values, determine nature of the quadratic form.
Diagonalise the matrix A =
Find the eigen vectors of A =
1 -2 0
-2 0 2
0 2 “ட்
If A is a symmetric matrix, verify whether AA? and A'A are symmetric?
3 0 0
5 4 0
3 6 1
Find the null space of AX=0 if A=
Verify whether A = |
What can you say about determinant of an orthogonal matrix? Prove or disprove the
result.
1
0
0
0
cos@
sin@
1 1 0 2
-2 -2 1 -5
1 1 -1 3
4 4 -1 9
0
—sin 1 is orthogonal.
cos 0
بد بد oR
Page 2 of 2
(4)
(7)
(7)
(6)
(7)
(7)
(6)
(8)
(6)
(6)