Semester : SEMESTER 3
Subject : Calculus of Single Variable-2
Year : 2022
Term : NOVEMBER
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 3B 03
Page:2
10.
11.
12.
13.
14.
15.
16.
18.
19.
289313
2 D 31818
Find the Maclaurin’s series of f(x) = e* and determine its radius of convergence.
ഗ്
Find = if x-¢2—u പി.
Find the parametric equation for aline L passing through the points P(-3,3,-2) and G(2,-1,4).
Find an equation in rectangular co-ordinates for the surface with the given cylindrical equation
7-2 ९08 20 - 22 = 4.
Find the point of tangency and unit tangent vector at the point on the curve :
r(t)= (£ +1)i +e‘ j-sin2tk att =0.
Find the length of the arc of the helix given by r(¢) =2costi+ 2sintj+tk,0
Section B
Answer any number of questions.
Each question carries 5 marks.
Maximum marks : 35,
ಕ டட (2x-1)°
Find the derivative of » =————.
4/3 +1
Find | 60503 (३६) शं) (32) क
௦௦.
1
Evaluate J سر کر
وه
3 logn
converges or diverges.
(a) Use integral test to determine whether the series 7
7 =]
ao 1
(b) Determine whether the series 2 72 + 9 converges or diverges.
2-1
289313