Semester : SEMESTER 4
Subject : Linear Algebra
Year : 2023
Term : APRIL
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 4B 04
Page:2
10.
11.
12,
13.
14.
15.
16.
17.
367339
2 C 41231
Give an example of an infinite dimensional vector space.
Define rank and nullity of a matrix.
7
Find the image of x = (1,1) under the rotation of टर about the origin.
Define eigen values and eigen vectors of a matrix.
= 0 0
2
-1 9/8 0.
Find the egien values of
1
5 ௮ ಎಮ
12.15 the eigen values of a matrix A, show that A” is the eigen values of A”
Show that (1,1) and (1, -1) are orthogonal vectors with respective the Euclidian inner product.
Let W be the subspace spanned by the orhonornal vector v, = (0, 1, 0). Find the orthogonal projection
of w= 0 1, 1) on W.
(Ceiling 25 marks)
Section B (Paragraph/Problem Type Questions)
Each question carries 5 marks.
All questions can be attended.
Overall Ceiling 35.
Solve the following linear system by Gauss-Elimination method,
8 = 28 + وند + إند
ध] - 29 + 328 = 1 -
.10 و4 + ود7 >- د3
Prove that, if A and B are invertible matrices of same size, then AB is invertible
ബര് (൧8) "14,
367339