Semester : SEMESTER 5
Subject : Linear Programming
Year : 2022
Term : NOVEMBER
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 5B 08
Page:1
248004
D 30562 (Pages : 4) पपि या © ०००००००००००००००००००००००००००००००००००००००००
FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION
NOVEMBER 2022
Mathematics
MTS 5B 08—LINEAR PROGRAMMING
(2019 Admissions only)
Time : Two Hours Maximum : 60 Marks
Section A
Answer any number of questions. Each question carries 2 marks.
Ceiling is 20.
1. Convert the following linear programming problem into canonical form :
Maximize f (x, y)=-— 2y — x subject to
2x-y2-1
3 - ٭ > 8
xy 20.
2. Draw and shade the region of a bounded polyhedral convex subset of jR? in the first quadrant.
3. Represent the following linear programming problem into canonical slack form :
Maximize f (x1, x2) = 200x, +150x2 subject to
21 + 259 < 20
221 4 229 ₹ 30
2214 39:25
21, 20௨ 20
4. Define infeasible linear programming problem.
5. Pivot on 4 in the canonical maximum tableau given below :
Turn over
248004