University of Calicut Previous Years Question Paper & Answer

University : University of Calicut
Course : B.Sc

Semester : SEMESTER 5

Subject : Linear Programming

Year : 2022

Term : NOVEMBER

Branch : MATHEMATICS

Scheme : 2020 Full Time

Course Code : MTS 5B 08

Page:1





PDF Text (Beta):

248004

D 30562 (Pages : 4) पपि या © ०००००००००००००००००००००००००००००००००००००००००

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION
NOVEMBER 2022
Mathematics
MTS 5B 08—LINEAR PROGRAMMING
(2019 Admissions only)
Time : Two Hours Maximum : 60 Marks
Section A

Answer any number of questions. Each question carries 2 marks.
Ceiling is 20.

1. Convert the following linear programming problem into canonical form :

Maximize f (x, y)=-— 2y — x subject to

2x-y2-1
3 - ‏٭‎ > 8
xy 20.

2. Draw and shade the region of a bounded polyhedral convex subset of jR? in the first quadrant.
3. Represent the following linear programming problem into canonical slack form :

Maximize f (x1, x2) = 200x, +150x2 subject to
21 + 259 < 20
221 4 229 ₹ 30
2214 39:25

21, 20௨ 20
4. Define infeasible linear programming problem.

5. Pivot on 4 in the canonical maximum tableau given below :

Turn over

248004

Similar Question Papers