Semester : SEMESTER 5
Subject : Numerical Analysis
Year : 2022
Term : NOVEMBER
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 5B 07
Page:1
247213
D 30561 (Pages : 2) ववि €,०००००००००००००००००००००००००००००००००००००००५
FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION, NOVEMBER 2022
Mathematics
MTS 5B 07—NUMERICAL ANALYSIS
(2019 Admissions only)
Time : Two Hours Maximum : 60 Marks
Section A
Answer any number of questions.
Each question carries 2 marks.
Ceiling is 20 marks.
1. State Intermediate value Theorem.
2. Determine the fixed points of the function f (x)= ८2 - 2.
3. Set up Newton’s iteration formula for computing 3/24 .
State the formula for method of false Position.
Write the Lagrange Interpolating polynomial through (2, 4) and (5, 1).
Write Newton’s Forward difference formula.
Write second derivative Mid Point formula.
Write Simpson’s Three- Eighths Rule formula.
^ م >> بی م ئا
Define Numerical quadrature.
10. Show that f(t,y)= 2| اد satisfies a Lipschitz condition on the interval
D= {(t.y):1
11. What does local truncation error at a specified step of an approximation method measure ?
12. What is the local truncation error, if Taylor's method of order 7 is used to approximate the solution
to y'(t)= f(t,» (t)),a
Turn over
247213