Semester : SEMESTER 5
Subject : Numerical Analysis
Year : 2021
Term : NOVEMBER
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 5B 07
Page:2
11.
12.
18.
14.
15.
16.
11
18.
19.
14806
2 D 10668
Write Newton’s Forward difference formula.
Set up Newton-Raphson formula for computing «सि.
(8 x 3 = 24 marks)
Section B
Answer at least five questions.
Each question carries 5 marks.
All questions can be attended.
Overall Ceiling 25.
Find a root of f (x) = x?— 3x —5 = O correct to 3 decimal places using Newton-Raphson method. Start
with x, =3
0= 3.
Using Lagrange’s interpolation formula find y (10) 17:
2 : 5 6 9 11
೫ :; 12 13 14 16
Using Newton’s forward interpolation formula find the cubic polynomial for the data :
൬: 0 1 2 3
y 3 1 2 1 10
١ 21 6 ۱ 3 .
Approximate |, = dx using Simpson’s 8 th rule with step value A = 0.25
Using Second derivative midpoint formula approximate f!! (1.3) if f (x) = 3xe*— cos x with h = 0.1.
Given :
೫% 1.9 1.29 1.30 1.31 1.40
y: 11.59006 13.78176 14.04276 14.30741 16.86187
Use Euler’s method to find approximate solution for the initial value problem y! =1 ಜತೆ
9
1 < £ < 2,y () =2 withh =0.25.
Use Newton’s Backward difference formula to construct interpolating polynomial of degree 1 if
f (— 0.75) = —.07181250, f (— 0.5) = —.02475000, f (—.25) =.33493750, f (0) = 1.10100000.
(5 x 5 = 25 marks)
14806