Semester : SEMESTER 5
Subject : Linear Mathematical Models
Year : 2021
Term : NOVEMBER
Branch : MATHEMATICS AND PHYSICS
Scheme : 2020 Full Time
Course Code : MTS 5D 03
Page:7
18595
4 D 10673-A
12. If A = 1 then At =
2 5
-5 8 $ 8
(A) 9ب 1 (B) -2 ೪.
-5 3
(C) 2-1 (D) None of the above.
13.
14.
15.
Let A be a square matrix.
P: A exist for every square matrix A. Q: There are square matrices A whose inverse does not
exist.
(A) Pis true and Q is false. (B) Pis false and Q is true.
(C) Pand Qare false. (D) Pand Qare true.
The maximum value of the objective function z = 3x + 4y, subject to the following constraints
2%. ೫54
- + و2 > 4
x>0
y 20
(A) 6. (B) 12.
(C) 18. (D) 24.
What is the solution of the following linear programming problem ?
Minimize Z =2x + 4y
subject to x+2y>10
32൮210
x20
೫20.
(4) 5. (8) 10.
(0) 15. (2) 20.
18595