Semester : SEMESTER 6
Subject : Complex Analysis
Year : 2022
Term : March
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 6B 11
Page:1
C 20646 (Pages : 2) फिज्ला16.....५०५०००००००००००००००«००«०००००००००००००००
SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022
(CBCSS-UG)
Mathematics
MTS 6B 11—COMPLEX ANALYSIS
(2019 Admissions)
Time : Two Hours and a Half Maximum : 80 Marks
Section A
Answer at least ten questions.
Each question carries 3 marks.
All questions can be attended.
Overall Ceiling 30.
Define holomorphic function in a domain D. And give an example for an entire function.
Prove or disprove : if fis differentiable a point z), then fis continuous at that point.
Define harmonic function with example.
Prove that sin2z + cos2z = 1.
State ML inequality.
Define the path independence for a contour integral.
உன்ன ~ ~ ^
State maximum modulus theorem.
a
b
8. Prove that [f(e)at =-[F (jae.
a b
li t ००
9. Prove or disprove if Pa z, =0, then 2 #-1+ 00014712௦6.
10. Find the radius of convergence of 2 ட்
11. Define pole of order n. Give an example of a function with simple pole at z = 1.
sinz
12. Find the principal part in the Laurent series expansion about the origin of the function f(z)= प्र
2
Turn over
97860