Semester : SEMESTER 6
Subject : Real Analysis
Year : 2022
Term : March
Branch : MATHEMATICS
Scheme : 2020 Full Time
Course Code : MTS 6B 10
Page:3
22.
23.
24.
25.
26.
27.
93837
3 C 20645
: (മ്മാ) t fe* dx = 2
Given ffe dx dy = ൩, find the value of 9
R? 0
Show that +p >0,q>0 B(p,q) = ८
൧9
(5 x 6 = 30 marks)
Section C
Answer any two questions.
Each question carries 10 marks.
State and prove Location of roots theorem.
State and prove Additivity theorem.
3 .
Evaluate (a) lim ~ for xeR,x>0. (b) lim sin Nx
1+x" 1+nx
+X
for xe R,x>0.
Discuss about their uniform convergence.
1
(a) Show that ~ >~1, [x7e “dx converges.
0
1
(b) Show that 4 <-1, [27९ “dx diverges.
0
(2x 10 =20 marks)
93837