Semester : S1 and S2
Subject : DIFFERENTIAL EQUATIONS
Year : 2019
Term : MAY
Branch : MECHANICAL ENGINEERING
Scheme : 2015 Full Time
Course Code : MA 102
Page:2
16
17
19
20
21
22
a)
b)
a)
b)
a)
b)
$2035 Pages: 3
solution.
OR
Reduce to first order and solve )'' + (1 + ಏಂ) =0
Solve the initial value problem 9y” — 30y’ + 25) = 0, y(0) = 327 (0) = 10.
Module 11
Solve “بن ~ 2)" + 5) = e**sinx.
Using method variation of parameters solve y” + 4y = tan2x
OR
Solve 2397 + 3x2y" + xy’ + + =x + logx
Solve using method of variation of parameters )'' - 2)' +y = <
Module 111
Find the Fourier series of periodic functionf (x) = {+ ಇ O vith period
2. Hence prove that 1 + = + = ಡೋ ದ 2
OR
Find the Fourier series of periodic function f(x) = xsinx ,0 < > < 27 with
period 2 7.
Module 1V
Solve p - 205 3x? sin(y+2x).
Solve rt+s-6t=y 5102,
OR
Solve x(y —z)p+y(z—x)q = 2८ - 2).
Solve (02 — 220" — 15D”) z= 1279.
Module V
A tightly stretched string of length L is fixed at both ends. Find the displacement
u(x,t) if the string is given an initial displacement f(x) and an initial velocity g(x).
OR
A tightly stretched string with fixed end points x = 0 and x = is initially in a
position given by u = vgsin? (=) ,0
position, find the displacement function u(x, t)
Page 2 of 3
(5)
(6)
(5)
(6)
(5)
(6)
(11)
(11)
(5)
(6)
(5)
(6)
(10)
(10)